人工智能技術包括哪些
人工智能技術包括:1、機器學習。2、知識圖譜。3、自然語言處理。4、機器翻譯。5、語義理解。6、問答系統。
1、機器學習
機器學習是一門涉及統計學、系統辨識、逼近理論、神經網絡、優化理論、計算機科學、腦科學等諸多領域的交叉學科,研究計算機怎樣模擬或實現人類的學習行為,以獲取新的知識或技能,重新組織已有的知識結構使之不斷改善自身的性能,是人工智能技術的核心。 基于數據的機器學習是現代智能技術中的重要方法之一,研究從觀測數據(樣本)出發尋找規律,利用這些規律對未來數據或無法觀測的數據進行預測。
根據學習模式、學習方法以及算法的不同,機器學習存在不同的分類方法。根據學習模式將機器學習分類為監督學習、無監督學習和強化學習等。根據學習方法可以將機器學習分為傳統機器學習和深度學習。
2、知識圖譜
知識圖譜本質上是結構化的語義知識庫,是一種由節點和邊組成的圖數據結構,以符號形式描述物理世界中的概念及其相互關系,其基本組成單位是“實體—關系—實體”三元組,以及實體及其相關“屬性—值”對。不同實體之間通過關系相互聯結,構成網狀的知識結構。在知識圖譜中,每個節點表示現實世界的“實體”,每條邊為實體與實體之間的“關系”。通俗地講,知識圖譜就是把所有不同種類的信息連接在一起而得到的一個關系網絡,提供了從“關系”的角度去分析問題的能力。
知識圖譜可用于反欺詐、不一致性驗證、組團欺詐等公共安全保障領域,需要用到異常分析、靜態分析、動態分析等數據挖掘方法。特別地,知識圖譜在搜索引擎、可視化展示和精準營銷方面有很大的優勢,已成為業界的熱門工具。但是,知識圖譜的發展還有很大的挑戰,如數據的噪聲問題,即數據本身有錯誤或者數據存在冗余。隨著知識圖譜應用的不斷深入,還有一系列關鍵技術需要突破。
3、自然語言處理
自然語言處理是計算機科學領域與人工智能領域中的一個重要方向,研究能實現人與計算機之間用自然語言進行有效通信的各種理論和方法,涉及的領域較多,主要包括機器翻譯、機器閱讀理解和問答系統等。
4、機器翻譯
機器翻譯技術是指利用計算機技術實現從一種自然語言到另外一種自然語言的翻譯過程。基于統計的機器翻譯方法突破了之前基于規則和實例翻譯方法的局限性,翻譯性能取得巨大提升。 基于深度神經網絡的機器翻譯在日常口語等一些場景的成功應用已經顯現出了巨大的潛力。隨著上下文的語境表征和知識邏輯推理能力的發展,自然語言知識圖譜不斷擴充,機器翻譯將會在多輪對話翻譯及篇章翻譯等領域取得更大進展。
5、語義理解
語義理解技術是指利用計算機技術實現對文本篇章的理解,并且回答與篇章相關問題的過程。語義理解更注重于對上下文的理解以及對答案精準程度的把控。隨著 MCTest 數據集的發布,語義理解受到更多關注,取得了快速發展,相關數據集和對應的神經網絡模型層出不窮。語義理解技術將在智能客服、產品自動問答等相關領域發揮重要作用,進一步提高問答與對話系統的精度。
6、問答系統
問答系統分為開放領域的對話系統和特定領域的問答系統。問答系統技術是指讓計算機像人類一樣用自然語言與人交流的技術。人們可以向問答系統提交用自然語言表達的問題,系統會返回關聯性較高的答案。盡管問答系統目前已經有了不少應用產品出現,但大多是在實際信息服務系統和智能手機助手等領域中的應用,在問答系統魯棒性方面仍然存在著問題和挑戰。
[免責聲明]
文章標題: 人工智能技術包括哪些
文章內容為網站編輯整理發布,僅供學習與參考,不代表本網站贊同其觀點和對其真實性負責。如涉及作品內容、版權和其它問題,請及時溝通。發送郵件至36dianping@36kr.com,我們會在3個工作日內處理。