數(shù)據(jù)分析是指用適當(dāng)?shù)慕y(tǒng)計(jì)分析方法對(duì)收集到的大量數(shù)據(jù)進(jìn)行分析,對(duì)其進(jìn)行總結(jié)、理解和消化,以最大限度地發(fā)揮數(shù)據(jù)的功能,發(fā)揮數(shù)據(jù)的作用。數(shù)據(jù)分析是對(duì)數(shù)據(jù)進(jìn)行詳細(xì)研究和總結(jié)的過(guò)程,以提取有用的信息并形成結(jié)論。20世紀(jì)初建立了數(shù)據(jù)分析的數(shù)學(xué)基礎(chǔ),但直到計(jì)算機(jī)出現(xiàn),才使實(shí)際操作成為可能,并推廣了數(shù)據(jù)分析。數(shù)據(jù)分析是數(shù)學(xué)與計(jì)算機(jī)科學(xué)相結(jié)合的產(chǎn)物。下面就讓小編為大家介紹統(tǒng)計(jì)分析數(shù)據(jù)的方法。
統(tǒng)計(jì)分析數(shù)據(jù)的方法
一、描述性統(tǒng)計(jì)
描述性統(tǒng)計(jì)是一類(lèi)統(tǒng)計(jì)方法的匯總,揭示了數(shù)據(jù)分布特性。它主要包括數(shù)據(jù)的頻數(shù)分析、數(shù)據(jù)的集中趨勢(shì)分析、數(shù)據(jù)離散程度分析、數(shù)據(jù)的分布以及一些基本的統(tǒng)計(jì)圖形。
1、缺失值填充:常用方法有剔除法、均值法、決策樹(shù)法。
2、正態(tài)性檢驗(yàn):很多統(tǒng)計(jì)方法都要求數(shù)值服從或近似服從正態(tài)分布,所以在做數(shù)據(jù)分 析之前需要進(jìn)行正態(tài)性檢驗(yàn)。常用方法:非參數(shù)檢驗(yàn)的K-量檢驗(yàn)、P-P圖、Q-Q圖、W檢驗(yàn)、動(dòng)差法。
二、回歸分析
回歸分析是應(yīng)用極其廣泛的數(shù)據(jù)分析方法之一。它基于觀測(cè)數(shù)據(jù)建立變量間適當(dāng)?shù)囊蕾?lài)關(guān)系,以分析數(shù)據(jù)內(nèi)在規(guī)律。
1. 一元線性分析
只有一個(gè)自變量X與因變量Y有關(guān),X與Y都必須是連續(xù)型變量,因變量Y或其殘差必須服從正態(tài)分布。
2. 多元線性回歸分析
使用條件:分析多個(gè)自變量X與因變量Y的關(guān)系,X與Y都必須是連續(xù)型變量,因變量Y或其殘差必須服從正態(tài)分布。
3.Logistic回歸分析
線性回歸模型要求因變量是連續(xù)的正態(tài)分布變量,且自變量和因變量呈線性關(guān)系,而Logistic回歸模型對(duì)因變量的分布沒(méi)有要求,一般用于因變量是離散時(shí)的情況。
4. 其他回歸方法:非線性回歸、有序回歸、Probit回歸、加權(quán)回歸等。
三、方差分析
使用條件:各樣本須是相互獨(dú)立的隨機(jī)樣本;各樣本來(lái)自正態(tài)分布總體;各總體方差相等。
1. 單因素方差分析:一項(xiàng)試驗(yàn)只有一個(gè)影響因素,或者存在多個(gè)影響因素時(shí),只分析一個(gè)因素與響應(yīng)變量的關(guān)系。
2. 多因素有交互方差分析:一頊實(shí)驗(yàn)有多個(gè)影響因素,分析多個(gè)影響因素與響應(yīng)變量的關(guān)系,同時(shí)考慮多個(gè)影響因素之間的關(guān)系
3. 多因素?zé)o交互方差分析:分析多個(gè)影響因素與響應(yīng)變量的關(guān)系,但是影響因素之間沒(méi)有影響關(guān)系或忽略影響關(guān)系
4. 協(xié)方差分祈:傳統(tǒng)的方差分析存在明顯的弊端,無(wú)法控制分析中存在的某些隨機(jī)因素,降低了分析結(jié)果的準(zhǔn)確度。協(xié)方差分析主要是在排除了協(xié)變量的影響后再對(duì)修正后的主效應(yīng)進(jìn)行方差分析,是將線性回歸與方差分析結(jié)合起來(lái)的一種分析方法。
四、假設(shè)檢驗(yàn)
1. 參數(shù)檢驗(yàn)
參數(shù)檢驗(yàn)是在已知總體分布的條件下(一股要求總體服從正態(tài)分布)對(duì)一些主要的參數(shù)(如均值、百分?jǐn)?shù)、方差、相關(guān)系數(shù)等)進(jìn)行的檢驗(yàn) 。
2. 非參數(shù)檢驗(yàn)
非參數(shù)檢驗(yàn)則不考慮總體分布是否已知,常常也不是針對(duì)總體參數(shù),而是針對(duì)總體的某些一般性假設(shè)(如總體分布的位罝是否相同,總體分布是否正態(tài))進(jìn)行檢驗(yàn)。
適用情況:順序類(lèi)型的數(shù)據(jù)資料,這類(lèi)數(shù)據(jù)的分布形態(tài)一般是未知的。
1)雖然是連續(xù)數(shù)據(jù),但總體分布形態(tài)未知或者非正態(tài);
2)總體分布雖然正態(tài),數(shù)據(jù)也是連續(xù)類(lèi)型,但樣本容量極小,如10以下;
主要方法包括:卡方檢驗(yàn)、秩和檢驗(yàn)、二項(xiàng)檢驗(yàn)、游程檢驗(yàn)、K-量檢驗(yàn)等。
數(shù)據(jù)分析的目的是集中和提取隱藏在大量看似混亂的數(shù)據(jù)中的信息,從而找出研究對(duì)象的內(nèi)在規(guī)律。在實(shí)際應(yīng)用中,數(shù)據(jù)分析可以幫助人們做出判斷,從而采取適當(dāng)?shù)男袆?dòng)。數(shù)據(jù)分析是一個(gè)有組織、有目的地收集數(shù)據(jù)、分析數(shù)據(jù)其成為信息的過(guò)程。這一過(guò)程是質(zhì)量管理體系的支持過(guò)程。以上就是小編為大家分享的統(tǒng)計(jì)分析數(shù)據(jù)的方法。
[免責(zé)聲明]
文章標(biāo)題: 統(tǒng)計(jì)分析數(shù)據(jù)的方法
文章內(nèi)容為網(wǎng)站編輯整理發(fā)布,僅供學(xué)習(xí)與參考,不代表本網(wǎng)站贊同其觀點(diǎn)和對(duì)其真實(shí)性負(fù)責(zé)。如涉及作品內(nèi)容、版權(quán)和其它問(wèn)題,請(qǐng)及時(shí)溝通。發(fā)送郵件至36dianping@36kr.com,我們會(huì)在3個(gè)工作日內(nèi)處理。