| 企服解答
人臉識別,是基于人的臉部特征信息進行身份識別的一種生物識別技術。用攝像機或攝像頭采集含有人臉的圖像或視頻流,并自動在圖像中檢測和跟蹤人臉,進而對檢測到的人臉進行臉部的一系列相關技術。即人臉識別包括了人臉圖像采集及檢測、人臉圖像預處理、人臉圖像特征提取以及匹配和識別這四個技術。
人臉識別原理
1、人臉圖像采集及檢測
目前主流的人臉檢測及采集的方法有Adaboost人臉檢測算法、基于特征的方法、基于模板的方法等等。
主要說說Adaboost人臉檢測算法。Adaboost人臉檢測算法,是基于積分圖、級聯檢測器和Adaboost算法的方法,該方法能夠檢測出正面人臉且檢測速度快。其核心思想是自動從多個弱分類器的空間中挑選出若干個分類器,構成一個分類能力很強的強分類器。
缺點是在復雜背景中,AdaBoost人臉檢測算法容易受到復雜環境的影響,導致檢測結果并不穩定,極易將類似人臉區域誤檢為人臉,誤檢率較高。
2、人臉圖像預處理
基于人臉檢測的結果,對圖像進行處理,為后面的特征提取服務,系統獲取的人臉圖像可能受到各種條件的限制和隨機干擾,需要進行縮放、旋轉、拉伸、光線補償、灰度變換、直方圖均衡化、規范化、幾何校正、過濾以及銳化等圖像預處理。
3、人臉圖像特征提取
人臉識別系統可使用的特征通常分為視覺特征、像素統計特征、人臉圖像變換系數特征、人臉圖像代數特征等。人臉特征提取就是針對人臉的某些特征進行的。人臉特征提取,也稱人臉表征,它是對人臉進行特征建模的過程。人臉特征提取的方法歸納起來分為兩大類:一種是基于知識的表征方法;另外一種是基于代數特征或統計學習的表征方法。
基于知識的表征方法主要是根據人臉器官的形狀描述以及他們之間的距離特性來獲得有助于人臉分類的特征數據,其特征分量通常包括特征點間的歐氏距離、曲率和角度等。人臉由眼睛、鼻子、嘴、下巴等局部構成,對這些局部和它們之間結構關系的幾何描述,可作為識別人臉的重要特征,這些特征被稱為幾何特征。
基于統計理論的方法是指利用統計分析與機器學習的方法分別尋找人臉與非人臉樣本特征,利用這些特征構建分類,使用分類進行人臉檢測。它主要包括神經網絡方法,支持向量機方法和隱馬爾可夫模型方法。基于統計理論的方法是通過樣本學習而不是根據人們的直觀印象得到的表象規律,因此可以減小由于人眼觀測不完整和不精確帶來的錯誤而不得不擴大檢測的范圍,但是這種方法需要大量的統計特性,樣本訓練費時費力。
4、人臉圖像匹配與識別
提取的人臉圖像的特征數據與數據庫中存儲的特征模板進行搜索匹配,通過設定一個閾值,當相似度超過這一閾值,則把匹配得到的結果輸出。人臉識別就是將待識別的人臉特征與已得到的人臉特征模板進行比較,根據相似程度對人臉的身份信息進行判斷。這一過程又分為兩類:一類是確認,是一對一進行圖像比較的過程,簡稱1:1,另一類是辨認,是一對多進行圖像匹配對比的過程,簡稱1:N。
| 拓展閱讀
人臉識別系統通常由以下構建模塊組成:
1、人臉檢測
人臉檢測器用于尋找圖像中人臉的位置,如果有人臉,就返回包含每張人臉的邊界框的坐標。如圖 3a 所示。
2、人臉對齊
人臉對齊的目標是使用一組位于圖像中固定位置的參考點來縮放和裁剪人臉圖像。這個過程通常需要使用一個特征點檢測器來尋找一組人臉特征點,在簡單的 2D 對齊情況中,即為尋找最適合參考點的最佳仿射變換。圖 3b 和 3c 展示了兩張使用了同一組參考點對齊后的人臉圖像。更復雜的 3D 對齊算法(如 [16])還能實現人臉正面化,即將人臉的姿勢調整到正面向前。
3、人臉表征
在人臉表征階段,人臉圖像的像素值會被轉換成緊湊且可判別的特征向量,這也被稱為模板(template)。理想情況下,同一個主體的所有人臉都應該映射到相似的特征向量。
4、人臉匹配
在人臉匹配構建模塊中,兩個模板會進行比較,從而得到一個相似度分數,該分數給出了兩者屬于同一個主體的可能性。
[免責聲明]
文章標題: 人臉識別原理
文章內容為網站編輯整理發布,僅供學習與參考,不代表本網站贊同其觀點和對其真實性負責。如涉及作品內容、版權和其它問題,請及時溝通。發送郵件至36dianping@36kr.com,我們會在3個工作日內處理。